
the Reetive Virtual MahineKarsten Verelst(Karsten.Verelst�vub.a.be)?Werner Van Belle(werner.van.belle�vub.a.be)Theo D'Hondt(tjdhondt�vub.a.be)Programming Tehnology Lab (PROG)Department Computer Siene (DINF)Vrije Universiteit Brussel (VUB)Brussels BelgiumAbstrat. We laim that urrent day reetive arhitetures do noto�er suÆient funtionality, and that new developments in omputersiene push us towards a stronger reetive model: reetive virtualmahines. We have witnessed these shortomings in the appliation do-main of mobility. Strong mobility is very diÆult to implement in today'sprogramming languages, mainly beause of the inability to apture theprogram's omputational state. Therefore we propose a new reetivearhiteture, the reetive virtual mahine, that o�ers suÆient supportfor appliations in mobility. In this paper we will �rst explain what suha reetive virtual mahine should look like, and point out several issuesthat any implementation should deal with. Finally we will demonstratethe virtual mahine's appliations, using seurity for mobile agents as aase.1 IntrodutionReetion has sine long proven its use. Most urrent day languages have atleast rei�ed their abstrat grammar into the objet level, thereby reating anabstration level that allows an elegant solutions to many problems. Howeverwhen we turn to new appliations domains suh as mobile agent systems wenotie some shortomings in today's reetive arhitetures.Suppose we want to implement a strong mobile program, that is a programthat has the ability to move to another loation on the network at any timeduring its exeution, even during loops and deep nested funtions. To implementthis appliation the following �ve steps should be taken: First the program'somputational state must be aptured. Then it should be serialized and movedaross the network. And �nally the reeiver should deserialize the message andontinue the exeution of the transferred omputation.Although this algorithm seems simple enough it annot be easily implementedin most popular languages today. Espeially the apturing and restoring of theomputational state proves to be problemati. A program's omputational stateusually onsist of some sort of stak, a memory and the ode. For a language? Karsten Verelst is funded by the Belgium Fund for sienti� Investigation (FWO)



like sheme for example this orresponds to the all stak and the environmentontaining variable-bindings. For a ompiled language the omputational statewould more resemble a data stak, a handful of registers and the ode. So ifwe want to apture the omputational state, we need to obtain a opy of thevirtual mahine's internal stak, memory model and ode. Aessing the ode isnot usually the problem beause the abstrat grammar is already rei�ed in manylanguages, but the apturing of the stak and memory is muh more problematiand often requires the programmer to maintain an expliit opy of the virtualmahine's internal data strutures himself.In pratie we have observed that strong mobility has been implementedin most popular languages, although the elegane and possible restritions ofthe resulting ode usually strongly orrespond to the reetive nature of thelanguage.So we an onlude that researh domains suh as mobility, onurreny,sheduling, ... would really bene�t from a stronger reetive arhiteture, wherethe interpreter's omputational state is reeted in the objet level. Thereforewe present the reetive virtual mahine whose development was inspired by thisidea. We present a virtual mahine that onsists only of a small mini-kernel thattries to reify 'everything', inluding the abstrat grammar, the omputationalstate and all of its primitives. In the next setions we will show what suh avirtual mahine should look like and how it an be implemented. We will �nishwith the seurity of mobile agents as a ase study whih will demonstrate theuse of the RVM's features.2 the Reetive Virtual MahineWe de�ne a reetive virtual mahine as a virtual mahine that rei�es and ab-sorbs its entire omputational state inluding the abstrat grammar, the memorymodel, the environment model, the stak and its primitives.As explained above we want a virtual mahine that o�ers as muh reetionas possible to the user. This starts of ourse with the reetion of the abstratgrammar. When a programmer inserts a program into the virtual mahine, theprogram is �rst parsed and transformed into a treelike struture, the abstratgrammar. Under reetion of the abstrat grammar we understand that thenodes of this tree are made expliit in the language. An example of a rei�edabstrat grammar an be found in the java.lang.reet pakage. All methods inthis pakage allow aess to the internal representation of Java's �rst lass datastrutures.Our reetive virtual mahine must of ourse reet its entire abstrat gram-mar. This impliates that all meta level data strutures must be �rst lass andthis also implies the existene of meta operators suh as read, eval and apply. Wewill not elaborate further on this subjet sine reetion of the abstrat gram-mar is already well understood and almost all popular languages today exhibitat least some reetive features.



Next we also wish the rei�ation and absorption of the entire omputationalstate. As explained above, the omputational state usually exists of some sort ofstak, a part of memory and the program ode. To reify the omputational statewe must reify these three data strutures. Sine the program ode is internallyrepresented as abstrat grammar, reetion of the ode is essentially the sameas reetion of the abstrat grammar desribed above.So next on the list is reetion of the stak. Rei�ation of the stak meansthat the meta level stak should be expliit and that it should preferably bestored in a objet level data struture. In pratie this means that the virtualmahine's stak an best be reated in the interpreters heap and that it is bestimplemented as some table or a list or whatever equivalent datastruture yourprogramming language supports. Also follows that all objets that an be storedon the stak should again be reeted in the objet level. For example, if yourstak an ontain debugging information, then this information must also bemade expliit in the objet level.Finally, to reify the entire omputational state we also need to reify somepart of the environment. What this environment looks like depends very heavilyon the virtual mahine. In ase of a ompiled program, this is usually someregisters and the heap, while for a funtional language this looks more like anenvironment with variable bindings, and for an objet oriented language this anbe the entire objet hierarhy. Independent of what it looks like the environmentshould be reeted in the language. Again this might imply that meta level datastrutures need to be made expliit and that possibly new datastrutures therepresent this environment need to be onstruted.When these three meta level datastrutures are reeted into the objetlevel we have suessfully reeted the entire omputational state. Tehniallythis means that we have introdued suÆient means of reetion to implementthe mobile appliation presented before. However, we want to go further andalso reify the virtual mahine's primitives and memory model. We are alreadyobserving an evolution towards this idea in the Squeak virtual mahine. Cur-rently the Squeak virtual mahine is already written in the language itself. Toatually use this metairular Squeak it is �rst ompiled to the C programminglanguage and then this generated C ode is further ompiled and the user ispresented with a new virtual mahine. Our aim is to ontinue this evolution andadd more reetive properties to the language, so that our virtual mahine anbe rewritten at runtime.For this to be possible, the virtual mahine's primitives should be reetedinto the language, or in simple words, the virtual mahines should be written inthe programming language itself. Under primitives we understand all funtion-ality o�ered by the meta level. This ranges from natives like '+' and sqrt, to theentire eval-method. The big advantage of suh a metairular implementationis that the programmer an at runtime hange the interpreter's behavior. Forexample nothing prohibits him from introduing new primitives or rede�ningthe evaluation of the existing ones. Sine we also onsider the parser (the read-primitive) part of the reeted primitives, the language's syntax isn't statially



de�ned anymore. Rede�ning this read-native would allow the programmer toadopt any syntax he likes. Another possible appliation an be an automativersioning system. As time goes by there will be many di�erent versions of thevirtual mahine in irulation and we enounter the problem of appliations re-quiring a ertain version of the VM before they an run. This problem an nowbe easily solved beause the appliation itself an upgrade the virtual mahineto the version it requires.From these examples it is obvious that reetion of the interpreter's primi-tives is really worthwhile researhing, even though it has some serious implia-tions on the design of the virtual mahine. So should the VM implementationonsist of many little modules, where eah module orresponds to a single prim-itive, so that hanges to the primitives will only have a limited impat. Thereis also the problem of poor performane. Most metairular interpreters havea tendeny to be slow. However we will explain in the next setion how thisperformane degradation an be solved using JIT-ompiling.Finally as a last step we would like to try to reet the virtual mahine'smemory model in the objet level. The main reason for this is to allow thereation of new abstrat grammar at runtime. A straightforward example mightbe where we want to add exeption handling to the virtual mahine. To thisend we would �rst introdue some new abstrat grammar that represents anexeption, after whih we would rede�ne the interpreter so it would evaluateorretly. Another example might be multi-paradigm programming, where weould for example add a logi interpreter to VM.Above we have presented what we understand under the term "ReetiveVirtual Mahine": a virtual mahine that reets as muh as possible of metalevel datastrutures, resulting in a small mini-kernel and a metairular inter-preter, that is then reeted into the meta level. Also we have shown that manydi�erent appliations domains an bene�t from the exibility that the RVM of-fers. Examples for this an be found in the domains of mobility, onurreny,sheduling, distribution, meta-programming and AOP, versioning tools and in-terpreter design.3 Implementation issuesWe have desribed what a reetive virtual mahine looks like and what bene�tsit o�ers over other less reetive interpreters. Now we will give some guidelinesabout how suh a reetive virtual an be implemented.For the implementation of the reetive virtual mahine we started witha small stak mahine alled pio[?℄. This is a small imperative programminglanguage, simpliity being one of its primary design goals. It already o�ers aompletely rei�ed abstrat grammar and an be very naturally onverted to aomplete reetive virtual mahine.Evaluation in this interpreter is based on ontinuations, whih we de�ne asan indivisible part of an exeution. For example a '+' primitive onsists of threeontinuations: one ontinuation for the evaluation of the �rst argument, another



ontinuation for evaluation of the seond argument and a third ontinuation thatatually alulates the result of the binary operator. Beause the evaluation ofthe �rst two ontinuations might result in a large omputation, involving manymore ontinuations, we store all ontinuations on a ontinuation stak. This stakontains the 'future' of the urrent evaluation.Our Reetive Virtual Mahine will be entirely de�ned in terms of theseontinuations and will therefore only onsist of a small mini-kernel that eahtime piks the top ontinuation from the ontinuation stak and exeutes it. Soif we sueed in reeting these ontinuations in the objet level we will havesueeded in a large part of the goals we set out in the de�nition of the virtualmahine: reetion of the virtual mahine's primitives.We believe that there are three possible ways to reet ontinuations intothe objet level.The �rst is to reate an abstrat grammar omponent that represents a on-tinuation. This would allow the programmer to reate new primitives by rear-ranging existing ontinuations. However this does not o�er us the exibility wehad in mind and the performane would be sluggish. A seond tehnique wouldbe the metairular evaluator where all primitives are written in the objet lan-guage and are evaluated by the metairular engine. This of ourse would allowus easy aess to all primitives but the overall performane would be horrible.So we hose for the third option where all primitives are written at the objetlevel, but are then run them through a JIT-ompiler so that the exeution anbe arried out in reasonable time.So by now we get to the point where the RVM looks like a mini-kernel writtenin the metalanguage, a bunh of primitives de�ned in the objet level and aJIT-ompiler. This allows the reetion of all the data-strutures we wanted andallows a good performane, but leaves us with the problem of bootstrapping. Thisan be solved by supplying the virtual mahine with a set of primitives writtenin the metalanguage. One the virtual mahine has booted we an ompile allobjet-level primitives and replae the �rst set of meta level booting primitives.Now that the underlying struture of the virtual mahine is de�ned, we antake a look at how the ontinuation stak an be reeted. In theory this is not sodiÆult. We make sure that we use one of the language's datatypes (like a tableor a list) as the internal representation for the stak and make sure everythingthat an ever be put on the stak is reeted. However in pratie we must beautious: sine both the interpreter and the programmer an aess the stak atthe same time we must look out for onurreny problems. That is why we optfor a funtional virtual mahine with as few destrutive operations as possible.Apart from the stak also the abstrat grammar, the environment and thememory model have to be reeted. This should not be a big problem sine this isalready implemented in many languages today and this issue is well understood.



4 Case study : seuring agents against maliious hostsWe have demonstrated what a reetive virtual mahine looks like and havementioned many of its advantages and appliations. We will onlude by pre-senting an a ase in mobile agent seurity that demonstrates the use of all theRVM's features.Mobile agent seurity an be divided into three di�erent �elds. First there isthe matter of safe ommuniation: sending our agent to the remote host withoutanybody interepting the ode. This hallenge is easily solved using ryptogra-phy. Next there is the threat of possible viruses: maliious agents that try toinfet a remote host. Although muh work remains to be done here, there existsome solutions like the Java sandbox model[?℄ and proof arrying ode[?℄. Themain hallenge in agent seurity is trying to protet the agent from a maliioushost. Suppose we would reate an agent that visits several airport sites lookingfor the heapest ight to a ertain loation. Our agent would be sent to a remoteairport site, ondut a loal database searh and ontinue its voyage to the nextairport. Now suppose that our agent arrives at a maliious airport. Sine themaliious host has aess to the agents internal variables, nothing prohibits himfrom tweaking the stored pries of previously visited airports, or even rewritingthe agent's ode. This is alled brainwashing. Up to now few tehniques havebeen found to e�etively seure an agent against brainwashing. Data-enryptionan never work beause if the agent an deipher the data it needs to work with,then so an the maliious host.One possible solution to protet against brainwashing is the appliation ho-momorphi funtions[?℄. We will enrypt an agent's input and let the agentalulate with the enrypted data. Then afterwards we will try to obtain the un-enrypted result from the enrypted omputation's answer. For example, supposethat we have an agent that omputes a very simple funtion, like an exlusiveor of two numbers. Then to seurely alulate the result of this funtion we willenrypt the input, pass it to the agent and later on try to derypt the omputedresult. In our example we ould enrypt the data by taking the omplement ofone of the arguments. Then we let the agent do its omputation on the enrypteddata, and later we derypt the result by taking the omplement one more. Asa result, the remote host never knows what enryption sheme was used, so itan never interpret the agent's data or brainwash the agent.Although this tehnique is very promising and is urrently one of the fewsolutions proposed to solve the maliious host problem, there are still a fewdrawbaks inherent to it. First of all the ode itself is not enrypted, so nothingprohibits the host from reoding the agent. Another major problem is loops andreursion. For a loop to be orretly exeuted, the loops result should be partiallyderypted so that the same loop invariant is satis�ed at the beginning of the loopagain. This partial deryption might help the host to derypt all data or abusethe loop's results.To solve these drawbaks we propose a solution where this tehnique is notonly applied to the agent's data but to the agent's ode as well. This wouldresult in reating a homomorphi agent: an agent that omputes an algorithm



similar to the original agent but that produes an enrypted result. Again themaliious host doesn't know the used enryption sheme and an therefore notreode the agent in a sensible way. This tehnique also solves the problem ofdeoding the reursion invariant. Sine we an onsider the enrypted agent asa program aompanied by its own interpreter, we an rewrite the interpreter atthe end of the loop to work with the new data.It is apparent that the implementation of suh an enryption sheme imposesvery strit rules on the virtual mahine. First of all, sine we are dealing withmobile agents, so rei�ation of the omputational state is wanted. However inthe above set-up we would like to be able to atually reode the interpreter. Wewant at all times to be able to rede�ne the interpreters primitives. So we indeedneed a deeply reetive language, suh as the RVM desribed above.5 ConlusionWe have shown how urrent day reetive arhitetures don't o�er suÆientsupport for several appliation domains suh as mobility, onurreny, shedul-ing, . . . That is why we developed a reetive virtual mahine that reets itsomputational state, its primitives and its memory model. We have shown howthis reetive virtual mahine an be implement with good a performane usingJIT-ompiling and a ontinuation-based interpreter. Finally have we proven theuse of this reetive virtual mahine using the maliious host problem as a ase.Referenes1. H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y., Y Kimura, OpenJIT:An Open-Ended, Reetive JIT Compiler Framework for Java, Springer Verlagheidelberg, May 20002. T. D'Hondt. http://pio.vub.a.be/3. Gong, Java Seurity: Present and Near Future, 19974. W. Van Belle, K. Verelst, T. D'Hondt, Loation Transparent Routing in MobileAgent Systems Merging Name Lookups with Routing Deember 19995. B. Folliot, I. Piumarta, F. Riardi, Virtual Virtual Mahines, September 1997.6. http://www-sor.inria.fr/projets/vvm/7. D. Ingalls, T. Kaehler, J. Maloney, S. Wallae, A. Kay Bak to the Future TheStory of Squeak, A Pratial Smalltalk Written in Itself8. A. Goldberg, D. Robson, Smalltalk-80: The Language, Addison Wesley, 1989, ISBN0-201-13688-09. T. Sander, C. F. Tshudin, Proteting Mobile Agents Against Maliious Hosts,November 11, 199710. J. Feigenbaum and P. Lee. Trust Management, and proof arrying ode in seuremobile-ode appliations (A position paper). marh 1997


