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t. We 
laim that 
urrent day re
e
tive ar
hite
tures do noto�er suÆ
ient fun
tionality, and that new developments in 
omputers
ien
e push us towards a stronger re
e
tive model: re
e
tive virtualma
hines. We have witnessed these short
omings in the appli
ation do-main of mobility. Strong mobility is very diÆ
ult to implement in today'sprogramming languages, mainly be
ause of the inability to 
apture theprogram's 
omputational state. Therefore we propose a new re
e
tivear
hite
ture, the re
e
tive virtual ma
hine, that o�ers suÆ
ient supportfor appli
ations in mobility. In this paper we will �rst explain what su
ha re
e
tive virtual ma
hine should look like, and point out several issuesthat any implementation should deal with. Finally we will demonstratethe virtual ma
hine's appli
ations, using se
urity for mobile agents as a
ase.1 Introdu
tionRe
e
tion has sin
e long proven its use. Most 
urrent day languages have atleast rei�ed their abstra
t grammar into the obje
t level, thereby 
reating anabstra
tion level that allows an elegant solutions to many problems. Howeverwhen we turn to new appli
ations domains su
h as mobile agent systems wenoti
e some short
omings in today's re
e
tive ar
hite
tures.Suppose we want to implement a strong mobile program, that is a programthat has the ability to move to another lo
ation on the network at any timeduring its exe
ution, even during loops and deep nested fun
tions. To implementthis appli
ation the following �ve steps should be taken: First the program's
omputational state must be 
aptured. Then it should be serialized and moveda
ross the network. And �nally the re
eiver should deserialize the message and
ontinue the exe
ution of the transferred 
omputation.Although this algorithm seems simple enough it 
annot be easily implementedin most popular languages today. Espe
ially the 
apturing and restoring of the
omputational state proves to be problemati
. A program's 
omputational stateusually 
onsist of some sort of sta
k, a memory and the 
ode. For a language? Karsten Verelst is funded by the Belgium Fund for s
ienti�
 Investigation (FWO)



like s
heme for example this 
orresponds to the 
all sta
k and the environment
ontaining variable-bindings. For a 
ompiled language the 
omputational statewould more resemble a data sta
k, a handful of registers and the 
ode. So ifwe want to 
apture the 
omputational state, we need to obtain a 
opy of thevirtual ma
hine's internal sta
k, memory model and 
ode. A

essing the 
ode isnot usually the problem be
ause the abstra
t grammar is already rei�ed in manylanguages, but the 
apturing of the sta
k and memory is mu
h more problemati
and often requires the programmer to maintain an expli
it 
opy of the virtualma
hine's internal data stru
tures himself.In pra
ti
e we have observed that strong mobility has been implementedin most popular languages, although the elegan
e and possible restri
tions ofthe resulting 
ode usually strongly 
orrespond to the re
e
tive nature of thelanguage.So we 
an 
on
lude that resear
h domains su
h as mobility, 
on
urren
y,s
heduling, ... would really bene�t from a stronger re
e
tive ar
hite
ture, wherethe interpreter's 
omputational state is re
e
ted in the obje
t level. Thereforewe present the re
e
tive virtual ma
hine whose development was inspired by thisidea. We present a virtual ma
hine that 
onsists only of a small mini-kernel thattries to reify 'everything', in
luding the abstra
t grammar, the 
omputationalstate and all of its primitives. In the next se
tions we will show what su
h avirtual ma
hine should look like and how it 
an be implemented. We will �nishwith the se
urity of mobile agents as a 
ase study whi
h will demonstrate theuse of the RVM's features.2 the Re
e
tive Virtual Ma
hineWe de�ne a re
e
tive virtual ma
hine as a virtual ma
hine that rei�es and ab-sorbs its entire 
omputational state in
luding the abstra
t grammar, the memorymodel, the environment model, the sta
k and its primitives.As explained above we want a virtual ma
hine that o�ers as mu
h re
e
tionas possible to the user. This starts of 
ourse with the re
e
tion of the abstra
tgrammar. When a programmer inserts a program into the virtual ma
hine, theprogram is �rst parsed and transformed into a treelike stru
ture, the abstra
tgrammar. Under re
e
tion of the abstra
t grammar we understand that thenodes of this tree are made expli
it in the language. An example of a rei�edabstra
t grammar 
an be found in the java.lang.re
e
t pa
kage. All methods inthis pa
kage allow a

ess to the internal representation of Java's �rst 
lass datastru
tures.Our re
e
tive virtual ma
hine must of 
ourse re
e
t its entire abstra
t gram-mar. This impli
ates that all meta level data stru
tures must be �rst 
lass andthis also implies the existen
e of meta operators su
h as read, eval and apply. Wewill not elaborate further on this subje
t sin
e re
e
tion of the abstra
t gram-mar is already well understood and almost all popular languages today exhibitat least some re
e
tive features.



Next we also wish the rei�
ation and absorption of the entire 
omputationalstate. As explained above, the 
omputational state usually exists of some sort ofsta
k, a part of memory and the program 
ode. To reify the 
omputational statewe must reify these three data stru
tures. Sin
e the program 
ode is internallyrepresented as abstra
t grammar, re
e
tion of the 
ode is essentially the sameas re
e
tion of the abstra
t grammar des
ribed above.So next on the list is re
e
tion of the sta
k. Rei�
ation of the sta
k meansthat the meta level sta
k should be expli
it and that it should preferably bestored in a obje
t level data stru
ture. In pra
ti
e this means that the virtualma
hine's sta
k 
an best be 
reated in the interpreters heap and that it is bestimplemented as some table or a list or whatever equivalent datastru
ture yourprogramming language supports. Also follows that all obje
ts that 
an be storedon the sta
k should again be re
e
ted in the obje
t level. For example, if yoursta
k 
an 
ontain debugging information, then this information must also bemade expli
it in the obje
t level.Finally, to reify the entire 
omputational state we also need to reify somepart of the environment. What this environment looks like depends very heavilyon the virtual ma
hine. In 
ase of a 
ompiled program, this is usually someregisters and the heap, while for a fun
tional language this looks more like anenvironment with variable bindings, and for an obje
t oriented language this 
anbe the entire obje
t hierar
hy. Independent of what it looks like the environmentshould be re
e
ted in the language. Again this might imply that meta level datastru
tures need to be made expli
it and that possibly new datastru
tures therepresent this environment need to be 
onstru
ted.When these three meta level datastru
tures are re
e
ted into the obje
tlevel we have su

essfully re
e
ted the entire 
omputational state. Te
hni
allythis means that we have introdu
ed suÆ
ient means of re
e
tion to implementthe mobile appli
ation presented before. However, we want to go further andalso reify the virtual ma
hine's primitives and memory model. We are alreadyobserving an evolution towards this idea in the Squeak virtual ma
hine. Cur-rently the Squeak virtual ma
hine is already written in the language itself. Toa
tually use this meta
ir
ular Squeak it is �rst 
ompiled to the C programminglanguage and then this generated C 
ode is further 
ompiled and the user ispresented with a new virtual ma
hine. Our aim is to 
ontinue this evolution andadd more re
e
tive properties to the language, so that our virtual ma
hine 
anbe rewritten at runtime.For this to be possible, the virtual ma
hine's primitives should be re
e
tedinto the language, or in simple words, the virtual ma
hines should be written inthe programming language itself. Under primitives we understand all fun
tion-ality o�ered by the meta level. This ranges from natives like '+' and sqrt, to theentire eval-method. The big advantage of su
h a meta
ir
ular implementationis that the programmer 
an at runtime 
hange the interpreter's behavior. Forexample nothing prohibits him from introdu
ing new primitives or rede�ningthe evaluation of the existing ones. Sin
e we also 
onsider the parser (the read-primitive) part of the re
e
ted primitives, the language's syntax isn't stati
ally



de�ned anymore. Rede�ning this read-native would allow the programmer toadopt any syntax he likes. Another possible appli
ation 
an be an automati
versioning system. As time goes by there will be many di�erent versions of thevirtual ma
hine in 
ir
ulation and we en
ounter the problem of appli
ations re-quiring a 
ertain version of the VM before they 
an run. This problem 
an nowbe easily solved be
ause the appli
ation itself 
an upgrade the virtual ma
hineto the version it requires.From these examples it is obvious that re
e
tion of the interpreter's primi-tives is really worthwhile resear
hing, even though it has some serious impli
a-tions on the design of the virtual ma
hine. So should the VM implementation
onsist of many little modules, where ea
h module 
orresponds to a single prim-itive, so that 
hanges to the primitives will only have a limited impa
t. Thereis also the problem of poor performan
e. Most meta
ir
ular interpreters havea tenden
y to be slow. However we will explain in the next se
tion how thisperforman
e degradation 
an be solved using JIT-
ompiling.Finally as a last step we would like to try to re
e
t the virtual ma
hine'smemory model in the obje
t level. The main reason for this is to allow the
reation of new abstra
t grammar at runtime. A straightforward example mightbe where we want to add ex
eption handling to the virtual ma
hine. To thisend we would �rst introdu
e some new abstra
t grammar that represents anex
eption, after whi
h we would rede�ne the interpreter so it would evaluate
orre
tly. Another example might be multi-paradigm programming, where we
ould for example add a logi
 interpreter to VM.Above we have presented what we understand under the term "Re
e
tiveVirtual Ma
hine": a virtual ma
hine that re
e
ts as mu
h as possible of metalevel datastru
tures, resulting in a small mini-kernel and a meta
ir
ular inter-preter, that is then re
e
ted into the meta level. Also we have shown that manydi�erent appli
ations domains 
an bene�t from the 
exibility that the RVM of-fers. Examples for this 
an be found in the domains of mobility, 
on
urren
y,s
heduling, distribution, meta-programming and AOP, versioning tools and in-terpreter design.3 Implementation issuesWe have des
ribed what a re
e
tive virtual ma
hine looks like and what bene�tsit o�ers over other less re
e
tive interpreters. Now we will give some guidelinesabout how su
h a re
e
tive virtual 
an be implemented.For the implementation of the re
e
tive virtual ma
hine we started witha small sta
k ma
hine 
alled pi
o[?℄. This is a small imperative programminglanguage, simpli
ity being one of its primary design goals. It already o�ers a
ompletely rei�ed abstra
t grammar and 
an be very naturally 
onverted to a
omplete re
e
tive virtual ma
hine.Evaluation in this interpreter is based on 
ontinuations, whi
h we de�ne asan indivisible part of an exe
ution. For example a '+' primitive 
onsists of three
ontinuations: one 
ontinuation for the evaluation of the �rst argument, another




ontinuation for evaluation of the se
ond argument and a third 
ontinuation thata
tually 
al
ulates the result of the binary operator. Be
ause the evaluation ofthe �rst two 
ontinuations might result in a large 
omputation, involving manymore 
ontinuations, we store all 
ontinuations on a 
ontinuation sta
k. This sta
k
ontains the 'future' of the 
urrent evaluation.Our Re
e
tive Virtual Ma
hine will be entirely de�ned in terms of these
ontinuations and will therefore only 
onsist of a small mini-kernel that ea
htime pi
ks the top 
ontinuation from the 
ontinuation sta
k and exe
utes it. Soif we su

eed in re
e
ting these 
ontinuations in the obje
t level we will havesu

eeded in a large part of the goals we set out in the de�nition of the virtualma
hine: re
e
tion of the virtual ma
hine's primitives.We believe that there are three possible ways to re
e
t 
ontinuations intothe obje
t level.The �rst is to 
reate an abstra
t grammar 
omponent that represents a 
on-tinuation. This would allow the programmer to 
reate new primitives by rear-ranging existing 
ontinuations. However this does not o�er us the 
exibility wehad in mind and the performan
e would be sluggish. A se
ond te
hnique wouldbe the meta
ir
ular evaluator where all primitives are written in the obje
t lan-guage and are evaluated by the meta
ir
ular engine. This of 
ourse would allowus easy a

ess to all primitives but the overall performan
e would be horrible.So we 
hose for the third option where all primitives are written at the obje
tlevel, but are then run them through a JIT-
ompiler so that the exe
ution 
anbe 
arried out in reasonable time.So by now we get to the point where the RVM looks like a mini-kernel writtenin the metalanguage, a bun
h of primitives de�ned in the obje
t level and aJIT-
ompiler. This allows the re
e
tion of all the data-stru
tures we wanted andallows a good performan
e, but leaves us with the problem of bootstrapping. This
an be solved by supplying the virtual ma
hine with a set of primitives writtenin the metalanguage. On
e the virtual ma
hine has booted we 
an 
ompile allobje
t-level primitives and repla
e the �rst set of meta level booting primitives.Now that the underlying stru
ture of the virtual ma
hine is de�ned, we 
antake a look at how the 
ontinuation sta
k 
an be re
e
ted. In theory this is not sodiÆ
ult. We make sure that we use one of the language's datatypes (like a tableor a list) as the internal representation for the sta
k and make sure everythingthat 
an ever be put on the sta
k is re
e
ted. However in pra
ti
e we must be
autious: sin
e both the interpreter and the programmer 
an a

ess the sta
k atthe same time we must look out for 
on
urren
y problems. That is why we optfor a fun
tional virtual ma
hine with as few destru
tive operations as possible.Apart from the sta
k also the abstra
t grammar, the environment and thememory model have to be re
e
ted. This should not be a big problem sin
e this isalready implemented in many languages today and this issue is well understood.



4 Case study : se
uring agents against mali
ious hostsWe have demonstrated what a re
e
tive virtual ma
hine looks like and havementioned many of its advantages and appli
ations. We will 
on
lude by pre-senting an a 
ase in mobile agent se
urity that demonstrates the use of all theRVM's features.Mobile agent se
urity 
an be divided into three di�erent �elds. First there isthe matter of safe 
ommuni
ation: sending our agent to the remote host withoutanybody inter
epting the 
ode. This 
hallenge is easily solved using 
ryptogra-phy. Next there is the threat of possible viruses: mali
ious agents that try toinfe
t a remote host. Although mu
h work remains to be done here, there existsome solutions like the Java sandbox model[?℄ and proof 
arrying 
ode[?℄. Themain 
hallenge in agent se
urity is trying to prote
t the agent from a mali
ioushost. Suppose we would 
reate an agent that visits several airport sites lookingfor the 
heapest 
ight to a 
ertain lo
ation. Our agent would be sent to a remoteairport site, 
ondu
t a lo
al database sear
h and 
ontinue its voyage to the nextairport. Now suppose that our agent arrives at a mali
ious airport. Sin
e themali
ious host has a

ess to the agents internal variables, nothing prohibits himfrom tweaking the stored pri
es of previously visited airports, or even rewritingthe agent's 
ode. This is 
alled brainwashing. Up to now few te
hniques havebeen found to e�e
tively se
ure an agent against brainwashing. Data-en
ryption
an never work be
ause if the agent 
an de
ipher the data it needs to work with,then so 
an the mali
ious host.One possible solution to prote
t against brainwashing is the appli
ation ho-momorphi
 fun
tions[?℄. We will en
rypt an agent's input and let the agent
al
ulate with the en
rypted data. Then afterwards we will try to obtain the un-en
rypted result from the en
rypted 
omputation's answer. For example, supposethat we have an agent that 
omputes a very simple fun
tion, like an ex
lusiveor of two numbers. Then to se
urely 
al
ulate the result of this fun
tion we willen
rypt the input, pass it to the agent and later on try to de
rypt the 
omputedresult. In our example we 
ould en
rypt the data by taking the 
omplement ofone of the arguments. Then we let the agent do its 
omputation on the en
rypteddata, and later we de
rypt the result by taking the 
omplement on
e more. Asa result, the remote host never knows what en
ryption s
heme was used, so it
an never interpret the agent's data or brainwash the agent.Although this te
hnique is very promising and is 
urrently one of the fewsolutions proposed to solve the mali
ious host problem, there are still a fewdrawba
ks inherent to it. First of all the 
ode itself is not en
rypted, so nothingprohibits the host from re
oding the agent. Another major problem is loops andre
ursion. For a loop to be 
orre
tly exe
uted, the loops result should be partiallyde
rypted so that the same loop invariant is satis�ed at the beginning of the loopagain. This partial de
ryption might help the host to de
rypt all data or abusethe loop's results.To solve these drawba
ks we propose a solution where this te
hnique is notonly applied to the agent's data but to the agent's 
ode as well. This wouldresult in 
reating a homomorphi
 agent: an agent that 
omputes an algorithm



similar to the original agent but that produ
es an en
rypted result. Again themali
ious host doesn't know the used en
ryption s
heme and 
an therefore notre
ode the agent in a sensible way. This te
hnique also solves the problem ofde
oding the re
ursion invariant. Sin
e we 
an 
onsider the en
rypted agent asa program a

ompanied by its own interpreter, we 
an rewrite the interpreter atthe end of the loop to work with the new data.It is apparent that the implementation of su
h an en
ryption s
heme imposesvery stri
t rules on the virtual ma
hine. First of all, sin
e we are dealing withmobile agents, so rei�
ation of the 
omputational state is wanted. However inthe above set-up we would like to be able to a
tually re
ode the interpreter. Wewant at all times to be able to rede�ne the interpreters primitives. So we indeedneed a deeply re
e
tive language, su
h as the RVM des
ribed above.5 Con
lusionWe have shown how 
urrent day re
e
tive ar
hite
tures don't o�er suÆ
ientsupport for several appli
ation domains su
h as mobility, 
on
urren
y, s
hedul-ing, . . . That is why we developed a re
e
tive virtual ma
hine that re
e
ts its
omputational state, its primitives and its memory model. We have shown howthis re
e
tive virtual ma
hine 
an be implement with good a performan
e usingJIT-
ompiling and a 
ontinuation-based interpreter. Finally have we proven theuse of this re
e
tive virtual ma
hine using the mali
ious host problem as a 
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